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ABSTRACT
DAACL

This report describes a thermodynamic analysis, numerical
analysis and FORTRAN computer program which analyzes the periodic
heat flow through a section of a body into the interior of the body. The
section is triangular in shape and one side is exposed to the lunar environ-
ment while the other side is exposed to the body's interior environment.
It is assumed that this results in a constant heat transfer coefficient. A
profile through the section consists of a thin outer metal skin, any thick-
ness of high grade insulation, and a thin inner metal skin. The computer

program is listed in Brown Engineering Program Library as Program

No. SP-149. WLW

Approved

R. C. Watson, Jr.
Director of Research
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LIST OF SYMBOLS

Mathematical FORTRAN Definition

A A Area of triangle

A ABAR Magnitude of vector N, Ny’ N,

a Time steps from start, t,, to any time, t

a; Time steps from start to time t;

a; Time steps from start to time t;

C CD Colongitude of sum at 00. 00 G. M. T. in
degrees

c CP Specific heat of insulation

Ey, j Energy incident on unit area of outer
surface of triangle at time point, j

Em,J EMIS Emissive power of lunar surface at time
point, j

e El10T1 Emissivity of outer surface of triangle at
temperature, T, j

3 FBAR Phase fraction (varies from 0 to 1)

G G Solar constant on lunar surface

H HTC Heat transfer coefficient from insulation
to cabin

h H Magnitude of § steps

k K Magnitude of t steps

X KBAR Thermal conductivity of insulation

L LKH Computational parameter (k/H)

£ L Thickness of insulation

£n XLN x direction cosine of triangle outward

normal

iv
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LIST OF SYMBOLS (Continued)

Mathematical FORTRAN
Ml M1

m M

mp XMN
mg, j XMS
Ny XNX
NY XNY
Nz XNZ
N1 N1

n N

n, XNN
ns’J XNS

P

aa QQ
ElA j QDOT
Qu,j

Iy

Definition

X direction cosine of a line from the
triangle to the sun at time point, j

Number of points defining insulation in
£ direction (M1l = m + 1)

Number of space intervals through
insulation (in § direction)

y direction cosine of triangle outward
normal

y direction cosine of a line from the
triangle to the sun at time point, )

X, ¥, z components of the vector product
which defines the triangle outward normal

Number of points defining a lunation
(NI =n+1)

Number of time intervals in one lunation

z direction cosine of triangle outward
normal

z direction cosine of a line from the
triangle to the sun at time point, j

Any period from the start of a lunation

Net heat flux passing through triangle
into cabin from times t; to t;

Heat flux passing into cabin over triangular
area, A, at time point, j

Heat flux passing into triangle per unit
area at time, j

Net heat flow into cabin, per unit area,
from times tj to t;




LIST OF SYMBOLS (Continued)

Mathematical FORTRAN
r RMTS
Tc TC
Ti,_j T(1, J)
T ™
m, j
T
Ml, j
Ty, j
TB___O TBET
t TIME
to
tls tZ
X, VY, 2

NOBROINE
L2 (2 ()
OO

XX1,YY1,Z2721
XX2,YY2,27Z2
XX3,YY3,Z223

EI0TM
E10TS

BETAD

BETAR

Definition

Reflectivity of lunar surface to solar
radiation

Cabin temperature

Temperature in insulation at distance

€ = (i-1) h and time (j-1) k after start of
lunation

Lunar surface temperature at time point, j

Cabin wall temperature (i.e., space point
Ml1) at time point, j

Triangle outer surface temperature (i.e.,
space point 1) at time point, j

Lunar equatorial temperature
Time, counted from 00.00 G. M. T.

Period from 00.00 G. M. T. to start of
lunation

Arbitrary times, counted from 00.00 G. M. T.

MOLAB coordinates, defined in Figure 2

Coordinates defining the triangle. Apexes
are numbered 1, 2, 3 in a COUNTER-
CLOCKWISE direction

Absorptivity of triangle outer surface to
lunar and solar radiation respectively

Latitude of MOLAB in selenocentric
coordinates (degrees)

Latitude of MOLAB in selenocentric
coordinates {(radians)



LIST OF SYMBOLS (Continued)

Mathematical FORTRAN

Y GAM

cos €1, COSALP

6 THED
THER

A LAMD
LAMR

)‘s,j LAMS

Ao LAMO

Alg, j DELLAM

3

p RHO

iy SIG

T TAU

Definition

Thermal diffusivity of insulation (defined
by k/p c)

Cosine of the angle between triangle outward
normal and a line to the sun at time point, j

Angular displacement of MOLAB x coordinate
from local east (degrees)

Angular displacement of MOLAB x coordinate
from local east (radians)

Longitude of MOLAB in selenocentric
coordinates (degrees)

Longitude of MOLAB in selenocentric
coordinates (radians)

Longitude of sun in selenocentric coordinates
at time point, j

Longitude of sun in selenocentric coordinates
at 00.00 G.M. T.

Difference in longitude between MOLAB and
sun at time point, j

Insulation space coordinate perpendicular
to triangle. Origin at outside

Density of insulation
Stefan-Boltzmann constant

Period of one lunation

vii



INTRODUCTION

As a result of the Apollo project, a need existed for a number of
brief mathematical analyses. These were to be used to check quickly
various aspects of design problems as they arose. This report provides
a rapid means of checking one thermodynamic aspect of the Apollo project,
namely, the heat fluxes passing into and out of a section of a body situated

in the lunar environment.

The section which was analyzed was a triangular shape and, moving
along a line perpendicular to the outer surface, was assumed to be com-
prised of the following elements: a thin metal outer skin; any thickness of
high grade insulation; and a thin metal inner skin backing onto a constant

temperature heat source or sink.

This particular shape was chosen because it is a relatively easy
matter to split any body surface into triangular sections, and the elements
of which it is assumed to be comprised are fairly representative of cur-

rent practice.

The report consists of a thermodynamic analysis, a numerical
analysis and a computer program written for an IBM 7094 computer which,
subject to the restrictions outlined later, will accurately calculate the
heat flux into the heat source or sink and the temperature distribution

through the insulation.



ANALYSIS

Simplifications1
1. The body surface is amenable to representation by triangles.
2. Each triangle can '"'see'' no other part of the vehicle.
3. Conduction of heat between triangles is neglectedz.
4. Conduction of heat through the insulation has a trivial effect
on an outer surface heat balance.
5. Periodic heat conduction through the insulation in one direction
only is considered3.
6. The lunar surface is assumed to be an isothermal flat plane of
infinite extent.
7. A single reflection of solar heat from the lunar surface is the
only reflection of significance.
8. The insulation has a constant thermal conductivity.
9. A spherical moon is assumed to revolve around the sun in a
circular orbit, coincident with the ecliptic, and to uniformly
rotate with a period T equal to a mean synodic month in a
counterclockwise direction when viewed from the north.
Calculation of Triangle Outer Surface Temperature, T j

Simplifications 3 and 4 indicate that
R 4
EI’J—CO'TI’J- (1)

where

- energy incident per unit area of triangle outer surface at

time, j
- emissivity of triangle at its own temperature, Tl,_j

- Stefan-Boltzmann constant, and

- temperature of triangle outer surface.



In the light of simplifications 2 and 7 the energy incident per unit
« area of the trianglé, Ej, j comes from three sources: direct solar flux
(represented by a constant solar constant, G = 442 Btu/ft’ hr, see simpli-
fication 8); solar flux reflected once from the lunar surface; and direct

lunar surface radiation (see simplification 6). Thus, if

Ern,j - emissive power of lunar surface at time "j"
G - solar constant on lunar surface
r - reflectivity of lunar surface to solar radiation
n, - ''z'" direction cosine of triangle outward normal
ng,j - ""z' direction cosine of solar direction at time '"j"
@, - absorptivity of triangle to lunar radiation
ag - absorptivity of triangle to solar radiation
€1 j - angle between triangle outward normal and solar direction

at time '"j'", then

(1-n,) (1-n,)
El,j=(asGCOS€1,j)i+ _Z—‘Q/erns’j +_Ta’mEm,j (2)

11

where ( )i = 0 when g, j 2 0and cos ¢ 1, j < 0 (i.e., when the sun shines

on the point X\, 8 but not on the triangle), and ( ); = ( );; = 0 when ng ;<0
(i.e., when the sun does not shine on the point X\, B8). Thus, substituting
Equation 2 into Equation 1 and rearranging, the outer surface temperature

of the triangle {which is the outer surface temperature of the insulation, i.e.,

point 1) at time '"j'" is given by

‘ _{(l‘nn) lem Em,jt (ag Gns,j)i] t (2 ag Gcos e j)y; }%
L,j =

(3)

2egd

where ( )i=0whenns,j §0andcosel,j < 0 and ( )i:( )ii:Owhen

ng, j < 0.
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Evaluation of Components of Unit Outward Normal

To evaluate the direction cosines of the outward normal from the
triangle, it is first necessary to coordinate the triangle. This is done by
numbering the apexes 1, 2, and 3 in a COUNTERCLOCKWISE direction
when the triangle is viewed from OUTSIDE the body. Thus, the coordi-
nates of the apexes in the coordinates x, y, and z shown in Figure 1 are

D I C O N O O I O I C I )

A vector product of the vectors describing sides 1-2 and 1-3

results in the components of a normal

N, = [y(2) - y(D][203) = (0] - [2(2) - 2(1] [y(3) - (1) (4)
I\]’y = [z(Z) - z(l)] [x(3) - X(l)] - [x(z) - x(l)] [z(3) - z(l)] (5)
N, = [x(2) - (1)) [y(s) - y(0] - [y(2) - (1] [x(3) - x(1)] (6)

giving a resultant

— 1
A = [(Ng)? + (Ny)? + (N,)?]2 (7)

Note that the area of triangle, A, is given by

A= . (8)

~ ||

Hence, the components of a unit normal (i.e., the direction cosines) in

the %, y and z direction respectively, are given by

N

!n:—% (9)
N

mn=%z (10)
N

nn='fz (11)



Lunar North Pole

MOLAB Zenith,
z

Location of MOLAB
Longitude, A
Latitude, S

Center of Moon

Selenocentric \
Longitude, 0
Latitude, 0 \

Figure 1. Orientation of Body Coordinates



Evaluation of Time Dependent Terms; Ng, j» €1, js Em,j

The longitude of the sum Ag,jat any time t in selenocentric

coordinates is clearly given by

\ .:xo..

A

(12)

where A\, is the longitude of the sum at t = 0. However, if the time t is
counted from 00.00 G. M. T., then A\, is easily determined from Reference 5

as

Ao =90 - C (13)

where C = colongitude of the sun in selenocentric coordinates (tabulated in
Reference 5). Thus, cognizance of Equations 12 and 13, together with the
coordinate rotations shown in Figure 1, suggests the solar direction
cosines "s,j’ mg j,» Bg, j in the x, y, z directions respectively may be

represented by

ls,j = - (cos 0 sin A)‘s,j + sin B sin 6 cos A)‘s,j) (14)
ms’j=sinesin A)‘s,j' sin B cos 6 cos Axs,j (15)
ng j = cos B cos AXg, j (16)

where
Arg =M= Ng 5 . (17)

The cosine of the angle between the sun and the unit normal, cos ¢ 1, j
is directly found from the scalar product of the unit sun vector and unit

normal, thus

cosel,jzls’j £n+ms,jmn+ns,jnn . (18)

Frequently, the lunar surface temperature history is represented
by a collection of points formed by the intersection of equatorial tempera-

ture against instantaneous phase fraction, f = A)\S,j/ZTT. (The points



recommended are shown in Appendix C.) The conversion from latitude

B = 0 to any latitude B is accomplished by

Tm,j = TB:O cos /e B . (19)

(Equation 19 is sufficiently accurate for most purposes up to a latitude

of about 45°.)

As the lunar surface acts very much like a black body, the

emissive power Em,j is simply given by

_ 4
Em,j =q Tm,j . {20)



CALCULATION OF HEAT FLUX THROUGH THE INSULATION?

The object of the analysis is to determine the heat flux passing

through a triangle into the cabin. Thus we must evaluate

ty t,
qA—S‘ qA,.dt-AS‘qu’Jdt
ty t1
where
qu,j = H (TMl,j - TC)

(21)

(22)

However, as these expressions are the conclusions of the analysis below,

more detailed considerations will be left until later.

The equation which describes the temperatures through the

insulation is Fourier's Heat Conduction equation for one-dimension, which

is

9T
R agl

T

———

t

< j=

where vy, the thermal diffusivity, is given by -lz/pc.

Boundary Conditions

The exterior (i.e., triangle), £ = 0
T = T(t)

the interior (i.e., cab), € =1

T £=g =H (T, - T

c)

time bounds (cyclical array)

T(g,t):T(g,t+T)

(23)

(24)

(25)

(26)




Numerical Procedure

Equation 23 with the boundary conditions represented by Equations

24, 25 and 26 indicate cyclical array of the form shown.

p——— One Cycle ™ time, t

Outer Tl’n Tl,l Tl’z o .. Tl,n Tl,Nl = Tl,l Tl’;_'_
Surface

Tzn T2, T2,z - -« Tz n Ta N1 = Tz T2,z

Tm’n Tm’l Tm,Z « e Tm,n Tm,Nl = Tm,l Tm,z
Inner TMl’n TMl,l TM].,Z e e e TMl,n TM].,N]. = TMl’l TM]., 2
Surface

Distance

g

where the m uniform space intervals are of magnitude h, i.e., mh = {
and the n uniform time intervals are of magnitude k, i.e., nk = v and the
Tl,j are known from repeated application of Equation 3. For convenience,

the end points m+l and ntl were given the symbols Ml and Nl respectively.

Differences

Examination of the matrix indicates that the unknown temperatures
are comprised of Ti,j; i=2toMlandj=1ton, i.e., m X n unknowns,.
These unknowns are solved by expressing Equations 23 and 25 in terms of
the array temperatures, i.e., by differencing Equations 23 and 25.
Equation 25 may only be expressed by backward differences, and in the

simplest form this gives



— (TMma j - Tm. i)
3 17
-k h =H(TM1,j - T¢) (27)

j=1ton, i.e., n equations.

However, Equation 23 may be expressed in central difference

form (usually the most accurate) and this yields

Tity,jt Tie1,5 - 2 Ty, (T4, j+1- Ty, 5-0)

1
h? Y 2k

(28)

i=2tomandj=1ton, i.e., (m-1)n equations. Consequently,
Equations 27 and 28 may now be applied at n + {m~1)n points, i.e.,

m X n points. Thus, the problem is solvable.

Numerical Solution

To solve Equations 27 and 28 numerically, it is prudent to

arrange them into a more convenient form thus

2tom

for i 1 h?
lton f THhi%2 [Ti“:i *Tion gt Zyw (Thget Ti,j-l)} (29)

J

and for j=1ton

Tp, =g (B T + L T j) - (30)
Application of the conventional iteration procedure then allows
the equations to be solved numerically. However before the iteration
procedure may be applied, a first guess is necessary. This guess was
drawn up by assuming that the conduction through the insulation was
linear with respect to distance which results in the following equation:

T, ;-T
Tl._f#.]_.__c)g . (31)

T 'l 1+ L

T

10



The instantaneous heat flux per unit area, E;u 3 is then immediately
solved by application of
Gy, ; = H(Tmy, 5 - To) - (32)

Integration of the Heat Flux

As mentioned previously, the object is to calculate the heat flowing
through a triangle between any two times t; and t, (which in practice are con-
fined to multiples of the time step k, say a;k and a;k where a; = (t; - t)/k

and a; = (tz - tg)/k)
qA=AS‘ gy 54t (21)

i—Iowever, this integral may be split into two parts thus

t2 t)
qA:Agélu,jdt-A‘S‘qu,jdt . (32)
t ts
t
Hence if the integral q, = S‘ qu,j dt may be evaluated, then the problem
to

is solvable. The integral q, itself may be reduced further because of the
cyclical nature of the problem. Thus, if the integralq,, to S t=t + 7
and (t - ty)/a may be evaluated, then any other interval p greater than v

may be evaluated as follows:

totp totbrtA totT totA
I
to to to to
where
btr+ A =p
0 A=~



to+ ¢t

The final evaluation of qA = AS‘ Elu, jdt was accomplished by the

tO
trapezium rule thus
tott a
=A\ Q. .at=2 ) (4. . +4. )k (34)
qa = Ay, j 2 Qu, j-17 Y, j .
t, j=2

12



FORTRAN PROGRAM

The program first reads all input data and then calculates the
temperature distribution on the outer surface for one period. The
program uses Equations 1 through 20 inclusively to calculate the
temperature distribution. Next the initial guess for the temperature
distribution is calculated from the outside wall temperatures using

Equation 31.

At this point, the program begins an iterative procedure using
Equations 29 and 30 to solve the matrix for the periodic temperature
distribution. The program has reached the desired solution when the

entire matrix is unchanged for two successive iterations.

The program next uses Equation 22 of the theory to calculate the
heat flux into the cabin for all points in the period. And finally, the pro-
gram calculates the total heat flux into the cabin, using Equation 34, and

prints out the matrix of the temperature distribution.

13



CONCLUSIONS

The theory and program outlined in this report will calculate the
periodic heat flux into the heat source or sink chosen and also the space

time distribution of temperature through the insulation.

Extending the analysis to include temperature dependent thermal
conductivities and temperature dependent heat transfer coefficients could

easily be accomplished if required.

14
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APPENDIX A
PROGRAM INPUTS
The first 61 input cards are for a table of f versus TB:O'
The format of these cards is 2F10. 0. The first value is f and the

second is TBzO'

The next two cards contain

CARD 1
1. The thickness of cab wall (L) ft
2. The step size on £ (H) ft
3. The step size ont (K) hr
4, The period (TAU) hr
5. The cab temperature (TC) °R

CARD 2
1. Heat transfer coefficient (HTC) Btu/ft? hr °R
2. The conductivity (KBAR) Btu/ft hr °R
3. The density (RHO) b/ ft?
4. The specific heat (CP)

The format for these cards is 5F15.0
The next three cards contain

CARD 1
1. Lambda, degrees LAMD
2. Beta, degrees BETAD
3. C, degrees CDh
4, Theta, degrees THED
5. G, Btu/hr ft? G
6. e (dimensionless) EIOT!
7. oy (dimensionless) EIOTM

CARD 2
1. o (dimensionless) EIOTS
2. 1 (dimensionless) RMTS
3. X coordinate of point 1 XX1, in
4. Y coordinate of point 1 YY1, in

16



CARD 2 (Continued)

5. Z coordinate
6. X coordinate
7. Y coordinate
CARD 3
1. Z coordinate
2. X coordinate
3. Y coordinate
4, Z coordinate

of point 1
of point 2
of point 2

of point 2
of point 3
of point 3
of point 3

The format for these cards is 7F10. 0.

The next card contains

1. Sigma, Btu/ft* hr °R*

2. Number of steps on X plus 1
3. Number of steps on t plus 1

The format of this card is E14.8, 2I5.

The next card contains

1. The starting point for calculation

of QQ

2. The stopping point for calculation

of QQ

17

ZZ1, in
XX2, in
YY2, in

ZZ2, in
XX3, in
YY3, in
ZZ3, in

(S1G)
(M1)
(N1)

(MM1)

(MM2)



APPENDIX B

LIST OF FORTRAN PROGRAM
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LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

DIMENSION T(21,1001)
DIMENSION T(21,101)
DIMENSION FAR(61),TBET(61)
REAL LsKoKBARyLKH
REAL LAMR,LAMD,LAMO,LAMS
Pl = 3.1415926536
DO 70 11 = 1,61
70 READ (5,666)FARIII),,TBET(II)

666 FORMAT(2F10.0)

READ(S5914)NCASE

14 FORMAT(IS5)
DO 11 KASE=1,NCASE

READ{S5,10)L4HeKs TAU,TC,HTC, KBAR,RHO,CP
READ{5,10)LsHsK,TAU,TC,HTC, KBAR,RHU,CP,TOL

10 FORMAT(5F15.0)
READ (5,676)LAMD+BETADCD,THED, GyEIOT1,EIOTM,EIOTS,RMTS,,XX1,

LYYLaZZ19yXX2,YY242229XX34YY3,123

19



LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

676 FORMAT(7F10.0 )
READ(54677)SIGyM1yN1
677 FORMAT(EL14.8,215)
READ{5,88)MM1 4 MM2
88 FORMAT(2I5)
LKH=KBAR/HTC
GAM = KBAR/RHO/CP
N = TAU/K
M = L/H
c WRITE{64275)NyM,N1 M1
WRITE(64275)N,M,N1,M1 ,KBAR,TOL
C 275 FORMAT(1HL1¢10Xy3HN =91644X¢3HM =91644Xy4HNL =, 16,4X,4HML =,16/7//)
275 FORMAT{1H1410Xys3HN =41694X93HM =,16,4X,4HNL =,1644Xy,4HM]l =,16,
15X 4HKBAR ¢E184893Xy 3HTOL yE18.8)
RAD = P1/180.0
LAMR = LAMD#RAD
BETAR = BETAD«RAD
CRAD=CD#RAD
LAMO = (PI1/2.0)-CRAD

THER = THED#*RAD

20



LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

XX1=XX1/12.0
XX2=XX2/12.0
XX3=XXx3/712.0
YYl=YYl /12.0
YY2=YY2 /12.0
YY3=YY¥3 /12.0
221=121 /12.0
112=112 /12.0
123=213 /12.0

XNX

{YY2-YY1)®{Z23-221) - (YY3-YYl)#(2Z2-111)

XNY

{222~221) % (XX3-XX1)=(ZZ3-2Z1)*(XX2=-XX1)
XNZ= {XX2=XX1)#{YY3-YY1l) = (XX3-XX1)#{YY2-YYl)
ABAR = SQRT(XNX#XNX + XNY#XNY & XNZ#XNZ)

A = 0.5%#ABAR

XLN = XNX/ABAR
XMN = XNY/ABAR
XNN = XNZ/ABAR

WRITE{6y101)RAD,LAMR,BETAR,CRAD,LAMO, THERy XX1 ¢ XX23XX34YYLl,YY2,YY3,
LZZ 142224223 XNXyXNYyXNZyABARy Ay XLN9XMNyXNN

101 FORMAT(1H , 5X,6E20.8)

21
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LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

INPUT OR CALCULATE T(M1,N1) NOW

DO 300 J = 14N1
XJ = J-1
LAMS = LAMOD - 2.0#PI=XJ=sK/TAU

DELLAM= LAMR-LAMS

XtS = ~(COS(THER)#SIN(DELLAM) +SIN(BETAR)#SIN(THER)*COS(DELLAM))
XMS = SIN(THER)#SIN(DELLAM) - SIN(BETAR)#COS(THER)#COS(DELLAM)
XNS = COS(BETAR)#COS(DELLAM)

COSALP = XLS#XLN + XMS#XMN + XNS#XNN
FBAR=10.0+DELLAM/(2.0%P])

IFB FBAR

F8l IF8

FBAR = FBAR - FB1

BEGIN INTERPOLATION ROUTINE HERE

DO 71 KT = 1,60

KT 1 = KT

22



71

665

72

73

77

LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

IF(FBAR.EQ.FAR(KT1)) GO TO 72

KT2 = KT + 1
IF(FBAR.GT.FAR(KT1).AND.FBAR.LT.FAR(KT2))GO TO 73
CONTINUE

WRITE(6,665)

FORMAT(1H1,15X,27THINTERPOLATION NOT POSSIBLE /1H1)

TINT = TBET(KTL)

GO 10 77
DIFFO = FAR(KT2)-FAR(KTL)
DIFF1 = FBAR - FAR(KTL)

DIFY = TBETI(KT2)-TBET(KT1)
DIFT]1 = DIFT#DIFFL1/DIFFO
TINY = TBET(KT1l) ¢+ DIFT1

CONTINUE

END OF INTERPOLATION ROUTINE

TMBAR = TINT#SQRT(SQRT{SQRT(COS(BETAR))))

TM = 1.8#TMBAR

EMIS=SIGaTMe=4
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LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

Cl = EIOTS=G=COSALP

C2 = EIOTS#*RMTS ® G @ XNS
C3 = EIOTM#=EMIS

C4 = 1.0/(EIOT1#S16)

IF{XNSeGE«0.0.AND.COSALP.LT.0.0)Cl = 0.0
IF{XNS.GT.0.0)6G0O TO 700
Cl = 0.0
c2 = 0.0

700 CONTINUE
TEMP = ({1.0-XNN)=(C3+4C2)/2.0)+Cl
T(1,J)=SQRT(SQRT(C4*TEMP))

300 CONTINUE

WRITE(6,101)(T(1sJ)sJ=1yN1)

DO 3000 I = 2,M1

XX = [-1

XX = XX#H

D0 3000 J = 1,Nl1

TXL = T(1sJ)

TX2 = 1.0 —HTC#XX/{HTC#L+KBAR)

X3

HTC *#TC#XX/(HTC#L+KBAR)
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LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

TEIyJ)=TX1#TX2+TX3

3000 CONTINUE

END OF INPUT OR CALCULATION OF T{(ML,NL)

IT =1

XIPT = M1

IPT = (XIPT/6.0)+1.0
IPT = 56/(2+IPT)

IXIT={Ml-1)®(N1l-1)

[IXT = N1-1
64 I1CT=0
IICT = 0

DO 21 4 = 2,N1
JIM = J-1

J1P

1]
[ 4
<+
—

DO 21 I = 2,M1
I1p = [+1
IlM = [-1

IF(I.EQ.M1)GO TO 30
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LIST OF FORTRAN PROGRAM

FOR MOLAB STuDY

IF{J.EQ.N1)J1P=2
TIJ = 05%(TUILIPyJI+TUIIMyJ)-H*H/(2.0%K2GAM) »

L{T(I,Jd1P)-T(I,J1M))})

GO TO 22
30 I1 = I-1
T1J = (TCeH + T(IlyJ)eLKH)/(LKH+H)

22 IF(ABSI{TIJU-T(14J))eLE.D.0001)ICT = [CT+1
22 IF(ABS{TIJ-T(I,J)).LE.TOL JICT = ICT+1l
TF{I.EQeM1.AND.ABS{TIJ-T(IsJ))eLE. 0.0001)IICT=1ICT+]
IF{1.EQeM1.AND.ABS(TIJ-T(I,J)).LE. TOL JIICT=IICT+1
T{1,3)=T1J4
IF(J.EQ.NL)IT{I,41)=T(1,4J)
21 CONTINUE
WRITE(643037)ITIICT IIXTHICT,IXIT
3037 FORMAT{1lH ,25X,5110)
1010 CONTINUE
IF(ICT.EQ.IXIT)GO TO 1012
IT=IT+1
GO T0O 64

1012 CONTINUE
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LIST OF FORTRAN PROGRAM

FOR MOLAB STUDY

DIMENSION QDOT(6)
WRITE(6,99)1IT7

99 FORMAT{1H1,50X,4HIT =,17)
WRITE(6,89)

89 FORMAT(1HO0,50X,19HTHESE ARE THE QDOTS)
1 =0
0O 81 J = 1,N1
I =1 +1
QDOT(1) = HTC#A=(T{M1l,4)-TC)
IF(I.NE.6.ANDeJ.NE.N1)GO TO 81
WRITE(6,101)(QDOT(II)II=1,1)
1 =0

81 CONTINUE
WRITE (6499)IT
IPRT = 0O
Jd =1
WRITE (6,100)4

100 FORMAT{1HO,50Xy3HJ = ,17)
WRITE (6,10L)(T(I,J)s1=1,M1)

IPRT = IPRT+1
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C 82

! C
82
C 87

c

87

LIST OF FORTRAN PROGRAM

FOR MDLAB STUDY

AKHTC2 = A»K#HTC/2.0
QQ=0.0

MM2 = MM2-1

DO 82 J = MM1,MM2
Ji=J+1
IF{J.EQ.MM2)J1=MM1+1
QQ

T{MLl,J)+T{M1,J1) - 2.0+TC + QQ

QQ = AsK o HTC/2.0+QQ
QA=(T(ML,J)+T(M1,J1)-2.0«TC)#AKHTC2 + QQ
WRITE (6,100)J41
WRITE(6,101)3(T(I,J1),I=1,M1),QQ
IPRT=IPRT+1
IF(MOD(IPRT,IPT)EQ.O)WRITE(6,99)IT

CONT INUE

WRITE(6,87)QQ

FORMAT(LIHL///7755X44HQQ =4E20.8///7/771177777750X%,

122H##=s« END OF JOB #xwsa/]H])

FORMAT(1HL/////55X,4HQQ =4,820.8//////7//7/777750X,

123Hssnxs END OF CASE #wsaux////)
CONTINUE

STOP

END

28



APPENDIX C

LUNAR SURFACE EQUATORIAL TEMPERATURE HISTORY

Lunar Surface Equatorial

Ph F i
ase Fraction Temperature (°K)

(Noon) .000 390

. 016 389

. 030 387
. 050 383.5
. 060 380.0
. 083 376.0
.100 371.0
.1016 361.0
.1030 353.0
.1500 341.0
. 1600 330.0
. 1830 313.0
.2000 292.0
L2160 266.0
.2300 227.0
. 2500 145. 0
. 2600 119.0
. 2830 116.0
. 3000 112.0
. 3160 110.0
. 3300 109.0
. 3500 105.0
. 3600 103.0
. 3830 101.0
.4000 100.0
.4160 99.0
.4300 98.0
.4500 97.0
. 4600 96.0
. 4830 95.0
(Midnight) .5000 94.0
.5160 93.0
.5300 92.0
. 5500 92.0
. 5600 92.0
. 5830 91.0
. 6000 91.0
.6160 ' 91.0
. 6300 90.0
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Phase Fraction

Lunar Surface Equatorial

Temperature (°K)

. 6500
. 6600
. 6830
. 7000
.7160
. 7300
. 7500
. 7600
. 7830
. 8000
. 8160
.8300
. 8500
. 8600
. 8830
. 9000
.9160
.9300
. 9500
. 9600
. 9830
(Following Noon) 1. 0000

30

90.
89.
89.
88.
88,
87.
87.
214.
259.
291,
312.
330.
342,
353.
361,
370.
377.
380.
385,
388.
390.
390.
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